Если два треугольника имеют равный угол, то площади этих треугольников относятся как произведения сторон, заключающих этот угол.
Дано: ΔАВС, ΔА₁В₁С₁, ∠А = ∠А₁.
Доказать: Sabc /Sa₁b₁c₁ = (AB · AC) / (A₁B₁ · A₁C₁) .
Доказательство:
Наложим треугольники так, чтобы угол А совместился с углом А₁, а стороны А₁В₁ и А₁С₁ лежали на лучах АВ и АС соответственно.
Проведем ВН - высоту ΔАВС. ВН является так же и высотой треугольника А₁ВС₁.
Площади треугольников, имеющих общую высоту, относятся как их основания (стороны, к которым проведена высота):
Sabc / Sa₁bc₁ = AC / A₁C₁ (1)
Проведем С₁Н₁ - высоту ΔА₁В₁С₁. С₁Н₁ является так же и высотой треугольника АВС₁, значит
Sabc₁ / Sa₁b₁c₁ = AB / A₁B₁ (2)
Перемножим равенства (1) и (2):
(Sabc / Sa₁bc₁) · (Sabc₁ / Sa₁b₁c₁) = (AC / A₁C₁) · (AB / A₁B₁)
Так как Sa₁bc₁ и Sabc₁ это площадь одного и того же треугольника, она сокращается и получаем:
Sabc / Sa₁b₁c₁ = (AB · AC) / (A₁B₁ · A₁C₁)
Дан параллелограмм ABCD На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN Докажите, что MBND –
Доказываешь, что два треугольник AMD и CNB:АМ = CN по условию,АВ=СВ, т.к. это стороны параллелограмма.По первому признаку равенства треугольников: AMD = CNBИз того же равенства треугольников получаешь, чтоПроверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональACс каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагоналиМNосталась прежней и делит их, как и в исходном четырехугольнике, пополам.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник параллелограмм.
ВН делит сторону АС пополам.
АС = АН + НС
НС = АН
АС = 12 + 12
АС = 24
ответ: АС = 24.