ответ: 8 см²
Объяснение:
КАК решают такие задачи.
Часто подобные задачи решаются вычитания ( или сложения ) площади фигур, образованных клетками. Чертят прямоугольник, который описывает данную фигуру. Вычисляют его площадь, затем площадь "лишних"фигур ( обычно это треугольники) и вычитают. Остается искомая площадь . Или делят данную фигуру на части, у которых удобно найти площадь, и затем складывают.
Обозначим прямоугольник АВСD, опишем около него прямоугольник KLMN. (см. вложение).
S(KLMN)=KL•LM=5•5=25 см²
∆BLC=∆AND по равным катетам.
Их общая площадь Ѕ₁=4•4=16 см²
∆BKA=∆CMD по равным катетам. Их общая площадь
Ѕ₂=1•1=1 см²⇒
Ѕ (ABCD)=S (KLMN)- 16-1=8 см²
----------
Другой
Из ∆ (BLC) по т.Пифагора найдем длину ВС=√(4²+4²)=4√2 см.
Из ∆ (ВКС) по т.Пифагора найдем ширину АВ=√(1²+1²)=√2 см
Площадь прямоугольника равна произведению его длины на ширину:
S(ABCD)=ВС•АВ=4√2•√2=8 см²
КМ - средняя линия основания.
SAKM - отсеченная пирамида.
Vsabc = 12
Vsabc = 1/3 Sabc · h
Vsakm = 1/3 Sakm · h, так как эти пирамиды имеют общую высоту.
Рассмотрим треугольники АВС и АКМ:
АК : АВ = 1 : 2
АМ : АС = 1 : 2
угол при вершине А общий, значит треугольники подобны по двум пропорциональным сторонам и углу между ними.
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sakm : S abc = 1 : 4
Sakm = 1/4 Sabc
Vsakm = 1/3 · 1/4 Sabc · h = 1/4 (1/3 Sabc · h) = 1/4 Vsabc
Vsakm = 1/4 · 12 = 3