Дан параллелограмм ABCD На продолжении диагонали АС за вершины А и С отмечены точки М и N соответственно так, что АМ = CN Докажите, что MBND –
Доказываешь, что два треугольник AMD и CNB:АМ = CN по условию,АВ=СВ, т.к. это стороны параллелограмма.По первому признаку равенства треугольников: AMD = CNBИз того же равенства треугольников получаешь, чтоПроверенные ответы содержат наджную, заслуживающую доверия информацию, оценнную командой экспертов. На «Знаниях» вы найдте миллионы ответов, правильность которых подтвердили активные участники сообщества, но Проверенные ответы — это лучшие из лучших.Диагональ ВD исходного параллелограмма АВСD осталась прежней, диагональACс каждой стороны увеличилась на одинаковую длину. Точка пересечения диагонали ВD и диагоналиМNосталась прежней и делит их, как и в исходном четырехугольнике, пополам.
Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник параллелограмм.
AD - искомое расстояние от точки до плоскости
ΔАВD - прямоугольный ==>
AD^2 = AB^2 - BD^2
ΔADC - прямоугольный ==>
AD^2 = AC^2 - CD^2
==>
AC^2 - CD^2 = AB^2 - BD^2
400- CD^2 = 169 - BD^2
CD^2 - BD^2 = 231
Из условия задачи BD/DC = 5/16 или BD = 5/16*СD ==>
CD^2 - 25/256*CD^2 = 231
256*CD^2 - 25*CD^2 = 231*256
231*CD^2 = 231*256
CD^2 = 256
CD = 16 ==> AD^2 = 400-256 = 144: AD = 12 cm