У октаэдра 8 граней - равносторонних треугольников.
Площадь полной поверхности правильного октаэдра с длиной ребра a равна S = 8*(a²√3/4) = 2√3a².
Приравняем заданному значению: 18√3 = 2√3a², a² = 9, а = 3.
Нашли длину ребра: а = 3.
Объем равен удвоенному объему правильной четырехугольной пирамиды . Основанием пирамиды является квадрат со стороной a, а высота пирамиды равна длине отрезка AO.
АО = √(a² - (a√2/2)²) = √(a² - (2a²/4)) = a/√2.
Объём V = 2*((1/3)*a²*(a/√2)) = a³√2/3.
Подставим а = 3.
Тогда V = 3³√2/3 = 9√2.
1. Могут.
2. б) 6 см
3. б) 45°
Объяснение:
1. Пересекающиеся прямые а и b задают плоскость α. Прямые а и с скрещивающиеся, значит прямая с не лежит в плоскости α.
Прямые с и b могут быть параллельными.
2.
а) Так как точки М и N принадлежат плоскости трапеции и плоскости α, то MN - линия пересечения плоскостей.
MN - средняя линия трапеции, значит
AD║MN, ⇒ AD║α (если прямая параллельна некоторой прямой, лежащей в плоскости, то она параллельна плоскости).
б)
AD + BC = 2MN
BC = 2MN - AD = 2 · 8 - 10 = 16 - 10 = 6 см
3. Признак скрещивающихся прямых: если одна прямая лежит в плоскости, а другая пересекает эту плоскость в точке, не лежащей на первой прямой, то прямые скрещивающиеся.
а) ВС лежит в плоскости (АВС),
МА пересекает (АВС) в точке А,
А не лежит на прямой ВС, значит
МА и ВС скрещивающиеся.
б) ∠(МА, AD) = 45° по условию,
BC║AD, значит
∠(МА, ВС) = 45°