Обозначим cos(альфа) = V2 / 10, a и b ---основания трапеции... sin(альфа) = V ( 1 - (cos(альфа))^2 ) = V ( 1 - 2/100 ) = V98 / 10 = 7V2 / 10 если построить высоту трапеции, то получим прямоугольный треугольник, в котором гипотенуза = 10, один катет = h = 10*sin(альфа) = 10*7V2 / 10 = 7V2 второй катет = b - (b-a)/2 = (b+a)/2 = 10*cos(альфа) = V2 Sтрапеции = h*(a+b)/2 = 7V2 * V2 = 14 (((здесь интересный момент в том, что и не нужно совсем отдельно находить основания трапеции... две проведенные высоты трапеции отрезают от трапеции два равных прямоугольных треугольника --- т.к. трапеция равнобедренная в этих треугольниках один катет --- высота, второй катет = (b-a)/2 и можно сразу найти нужную для площади (a+b)/2
Вариант решения. Сделаем рисунок трапеции АВСД. Так как углы при основании АД в сумме равны 44°+46°=90°, продолжения сторон АВ и СД пересекаются в точке О под прямым углом ( третий угол образовавшегося треугольника АОД =180°-90°=90°) По условию НМ=6 см, КЕ=14 см Проведем ВТ праллельно ОД. Угол АВТ - прямой. Треугольник АВТ - прямоугольный. Прямоугольные треугольники АОД и АВТ подобны по прямому углу и острому углу А,общему для обоих треугольников. Медиана ВР треугольника АВТ параллельна ОМ и, следовательно, параллельна НМ и равна ей. ВР=НМ=6 см Медиана прямоугольного треугольника равна половине его гипотенузы. АТ=2 ВР=12 см КФ - средняя линия треугольника АВТ и равна АТ:2=12:2=6 см Рассмотрим четырехугольник ВСДТ. Это параллелограмм по построению. ВС=ЕФ ЕФ=КЕ-КФ=14-6=8 см ВС=ФЕ=ТД=8 см АД=АТ+ТД=12+8=20 см ответ: Основания трапеции равны 8 см и 20 см
угол ВОА=90
угол ВАО=100:2=50
угол АВО=180-90-50=40