решила те, которые знаю
прости солнышко, что не все
я решала задачи слева направо, с верхнего левого угла
1) сумма углов А и В = 90°
следовательно:
3х = 90
х = 30°
угол А = 2*30° = 60°
угол В = 30°
2) не смогла
3) угол В : угол А = 2 : 3
2х + 3х = 90°(сумма углов А и В)
5х = 90
х = 18°
угол В = 18*2 = 36°
угол А = 18*3 = 54°
4) угол АВС = 60°(т.к. угол АВС и угол в 120° – смежные углы, которые в сумме составляют 180°)
СВ - катет, который лежит напротив угла в 30° => он равен половине гипотенузы
следовательно:
СВ = а (а)
АВ = 2а (с)
по условию: а + с = 26,4 => 3а = 26,4
26,4 : 3 = 8,8
а = 8,8
с = 8,8 * 2 = 17,6
5) ВН = АВ/2 = 6
ВН = НС = 6
6) СВ = 2 * НВ
АВ = 2 * СВ = 8
7) 8) 9) не смогла
будут вопросы - пиши :)
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK;
и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK = BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.