1. По рисунку треугольник АВС прямоугольный. Сумма острых углов равна 90°. Следовательно, <A=45°. треугольник равнобедренный (углы при основании равны). Значит ВН - высота, медиана и биссектриса. Треугольник ВНС - равнобедренный и ВН = СН = 7:2 = 3,5 см.
ответ: <A = 45°, ВН = 3,5 см.
2. Треугольники МNK и MKP равны по гипотенузе (дано) и катету (МК - общий). Следовательно, МР = NK. Угол MNK = 60°, следовательно, <NMK=30° (по сумме острых углов). Катет, лежащий против угла 30° равен половине гипотенузы. NK= 12 см = МР.
ответ: МР = 12 дм.
1. По рисунку треугольник АВС прямоугольный. Сумма острых углов равна 90°. Следовательно, <A=45°. треугольник равнобедренный (углы при основании равны). Значит ВН - высота, медиана и биссектриса. Треугольник ВНС - равнобедренный и ВН = СН = 7:2 = 3,5 см.
ответ: <A = 45°, ВН = 3,5 см.
2. Треугольники МNK и MKP равны по гипотенузе (дано) и катету (МК - общий). Следовательно, МР = NK. Угол MNK = 60°, следовательно, <NMK=30° (по сумме острых углов). Катет, лежащий против угла 30° равен половине гипотенузы. NK= 12 см = МР.
ответ: МР = 12 дм.
cos(α) = √(1 - 0.8²) = √(1 - 16/25) = √(9/25) = 3/5 = 0.6
и по т.косинусов
a² = 30² + 25² - 2*30*25*0.6 = 5*6*5*6 + 25*(25 - 2*3*6) = 25*(36-11) = 25²
третья сторона = 25