Объем - это площадь основания на высоту. Площадь основания есть площадь ромба, а высоту можешь найти исходя из того, что диагональные сечения есть прямоугольники, ширина обеих - высота, а длины равны длинам соответствующих диагоналей. Произведение диагоналей находишь из определения площади ромба. S= произведение диагоналей делённое пополам, то есть ab/2. Отсюда ab=60. Это же произведение можно ещё представить, как (96/h) *(40\h) = 3840/(h^2), где h - высота
По формуле объема пирамиды: V = (1/3)*S*h, где S это площадь основания пирамиды, h это высота пирамиды. h = 2*(√3). Пирамида правильная, значит 1) в основании ее лежит правильный многоугольник, в данном случае (т.к. пирамида треугольная) правильный треугольник. 2) Вершина пирамиды проецируется в центр основания, то есть если из вершины пирамиды опустить высоту к основанию пирамиды, то точкой пересечения этой высоты с основанием будет центр основания=центр описанной и вписанной окружностей правильного многоугольника, который лежит в основании пирамиды. Далее я на листочке написал, который прикрепил ниже. ответ. 216.
3840/h^2 = 60, откуда h^2 = 64, откуда h=8.
Объем равен 30*8 = 240