Сначала найдем точку пересечения диагоналей параллелограмма, зная, что в этой точке диагонали делятся пополам. Координаты середины отрезка AС найдем по формуле: x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2. В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма О(3;2;1). Теперь по этой же формуле найдем координаты вершины D параллелограмма. (Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6) Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2} Длина вектора BD, или его модуль, находится по формуле: |BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14. ответ: длина диагонали BD равна 2√14.
1) Рассмотрим 2 треугольника: АВВ1, АОС1: - оба прямоугольные - уголВАО общий известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или: уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2), очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем: уголАВС+уголВАО=уголАОС+уголВАО, уголАВС=уголАОС, ч.т.д
или вот так: уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1)) Тогда π/2-уголВСС1=π/2-уголОСВ1, а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить: уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.
1)нет не может быть параллельной плоскости бета 2)да может пересекать плоскость бета 3)нет не может лежать в плоскости бета оъяснение: естественно. эти прямые пересекаются. поскольку прямая а лежит в плоскости альфа, она не может пересечься с плоскостью бета в точке, не лежащей в плоскости альфа. следовательно, прямая а проходит через точку, лежащую одновременно в плоскостях альфа и бета. а такие точки образуют прямую с. следовательно, прямая а имеет общую точку с прямой с, причём единственную (поскольку она пересекается с плоскостью бета, то имеет с ней единственную общую точку). следовательно, эти прямые пересекаются.
В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма О(3;2;1).
Теперь по этой же формуле найдем координаты вершины D параллелограмма.
(Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6)
Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2}
Длина вектора BD, или его модуль, находится по формуле:
|BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14.
ответ: длина диагонали BD равна 2√14.