прямые а и в принадлежат плоскости бета. Если прямая а пересекает плоскость альфа, то плоскость вета и плоскость альфа пересекаются по прямой., как имеющие одну общую точку. Эта прямая пересечения плоскостей принадлежит обеим плоскостям и пересекает одну из паралелльных прямых плоскости бета. Прямая, пересекающая одну из паралелльных прямых, пересекает параллельные ей прямые.
Прямые в и с пересекаются в точке О. Если бы прямая в имела еще одну точку пересечения с плоскостью альфа, то она бы принадлежала ей и плоскости альфа и бета пересеклись по прямой в. Плоскости пересекаются по прямой с, значит прямая в пересекается с прямой альфа только в одной точке. В нашем случае принадлежащей прямой с
Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
прямые а и в принадлежат плоскости бета. Если прямая а пересекает плоскость альфа, то плоскость вета и плоскость альфа пересекаются по прямой., как имеющие одну общую точку. Эта прямая пересечения плоскостей принадлежит обеим плоскостям и пересекает одну из паралелльных прямых плоскости бета. Прямая, пересекающая одну из паралелльных прямых, пересекает параллельные ей прямые.
Прямые в и с пересекаются в точке О. Если бы прямая в имела еще одну точку пересечения с плоскостью альфа, то она бы принадлежала ей и плоскости альфа и бета пересеклись по прямой в. Плоскости пересекаются по прямой с, значит прямая в пересекается с прямой альфа только в одной точке. В нашем случае принадлежащей прямой с