Дано: трапеция ABCD равнобедренная (AD || BC ; AB =CD) AE =EB ; BF =FC ; CM=MD ; DN =NA . ----- док-ать EFMN ⇒ромб
Середины любого четырехугольника (даже не выпуклого) образуют параллелограмм. В случае равнобедренной трапеции ( поскольку диагонали равны ) этот четырехугольник будет ромб . --- EF и NM средние линии соответственно треугольников ABC и ADC. Следовательно: EF =AC/2 =NM и EF || AC , NM || AC ⇒ EF || NM . Четырехугольник EFMN параллелограмм. ΔEAN = ΔMDN (по первому признаку равенства Δ -ов) AE =AB/2 =DC/2 =DM и AN =DN =AD/2 ; ∠EAN = ∠MDN ) Значит EN = MN . Стороны параллелограмма EFMN равны⇒ EFMN -ромб. Доказано ------------------------------------------------------------------------------------------- * * * Можно и так ΔABD = ΔDCA (по первому признаку равенства Δ -ов) (AD - общее , AB =DC , ∠BAD =∠CDA * * * см фото
АВСА1В1С1 - усечённая пирамида. Предложенное сечение - трапеция с основаниями, равными высотам, проведённым в основаниях пирамиды. АМ - высота в тр-ке АВС, ВМ=МС. А1М1 - высота в тр-ке А1В1С1 В1М1=С1М1. Высота в прямоугольном тр-ке вычисляется по ф-ле h=а√3/2 АМ=8√3·√3/2=12. А1М1=4√3·√3/2=6. АММ1А1 - трапеция. Её площадь: S=(a+b)h/2=(АМ+А1М1)h/2 ⇒ h=2S/(АМ+А1М1)=2·54/(12+6)=6. Площадь правильного тр-ка: S=a²√3/4. S1=(8√3)²·√3/4=48√3. S2=(4√3)²·√3/4=12√3. Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3 V=6(48√3+√(48√3·12√3)+12√3)/3=2(48√3+24√3+12√3)=168√3.