∠х = 60°
Объяснение:
Обозначим вершины треугольника. Вершину при ∠х - буквой А,
верхнюю вершину как В , вершину при ∠25° - С, точку пересечения медианы с АС как О.
1) Рассмотрим ΔОВС.
ОВ = ОС по построению, следовательно, ΔОВС - равнобедренный и
∠С = ∠ОВС - 25°. Тогда
∠ВОС = 180° - 2*25° = 130°
2) ∠АОВ и ∠ВОС - смежные, их сумма = 180°, значит,
∠АОВ = 180° - 130° = 60°
3) ΔВОА - равнобедренный, т.к. ВО =АО по построению. Тогда
∠х = ∠АВО = (180° - 60°)/2 = 60°
Все три угла в ΔВОА равны (х = ∠АВО =∠АОВ =60°), значит, этот треугольник равносторонний.
Оскільки у ромба всі сторони рівні, то знаючи, периметр, можна знайти його сторону, яку ми позначимо с:
с=Р/4=100/4=25 см
Оскільки ромб--різновид паралелограма, то його діагоналі точкою перетину діляться навпіл. Отже, вони поділяють ромб на 4 рівних прямокутних трикутники. Також половини відповідних діагоналей співвідносяться так, як і цілі діагоналі, тож, позначимо половину меншої діагоналі а, а половину більшої b
a:b=6:8=3:4 a=3k, b=4k
Діагоналі ромба перпендикулярні, тому отриманий трикутник зі сторонами а, b і с -- прямокутний, де катети співвідносяться як 3 до 4. Отже, це єгипетський трикутник, де c=5k
5k=25 | : 5
k=5
Площа прямокутного трикутника дорівнює So=ab/2
Отже, площа ромба дорівнює
S=So*4=4*ab/2=2ab=2*3k*4k=2*3*5*4*5= 600 см²
Я думаю рисунок начертишь.
Параллелограмм, сумма всех углов равна 360 град, сумма углов при каждом основании равна 180 град. Значит две биссектрисы, проведенный из углов при одном основании, образуют треугольник, сумма углов при основании которого равна 180/2 = 90 градусов. Значит и третий угол AKD тоже равен 90 град.
Получается прямоугольный треугольник с известными катетами, найдем гипотенузу AD:
Площадь треугольника AKD равна полупроизведению катетов, то есть
6 * 10 / 2 = 30
Высота треугольника AKD совпадает с высотой параллелограмма.
Площадь треугольника AKD также равна полупроизведению высоты на основание. Найдем высоту:
(Из этой формулы уже можно найти площадь параллелограмма, если умножим уравнение на 2 получим, что площадь параллелограмма равна двум площадям треугольника.)
Теперь находим площадь параллелограмма: