Номер 1
Треугольники АВD и DBC равны между собой по второму признаку равенства прямоугольных треугольников-по катету и прилежащему к нему острому углу
DB-общая сторона
<АDB=<BDC
Исходя из этого
AD=AC
Номер 2
Треугольники АВС и АСD равны между собой по третьему признаку равенства треугольников-по трём сторонам
ВС=AD;BA=CD;по условию задачи
АС-общая
Номер 4
Треугольники АВD иСВD равны между собой по второму признаку равенства треугольника-по стороне и двум прилегающим к ней углам
<АВD=<DBC;<ADB=<BDC
DB-общая сторона
В равных треугольниках соответствующие стороны и углы равны между собой,поэтому
<А=<С
Номер 3
Треугольники равны по второму признаку равенства треугольников-по стороне и двум прилежащим к ней углам
<А=<D;AO=OD;
<АОС=<АОВ,как вертикальные
Из равенства треугольников вытекает,что АС=DB
Номер 1
Треугольники АDB и ВDC прямоугольные и равны между собой по 5 признаку равенства прямоугольных треугольников-по катету и гипотенузе
AD=CD;AB=BC по условию задачи
Треугольник АDC-равнобедренный,т к по условию АD=DC,cледовательно-углы при основании равнобедренного треугольника равны между собой
<А=<С
Номер 2
Треугольники равны между собой по второму признаку равенства треугольников-по стороне и двум прилегающим к ней углам
ВО=ОD;<B=<D; <AOB=<COD,как вертикальные
Исходя из равенства треугольников,
АО=ОС
Номер 4
Треугольники равны по первому признаку равенства треугольников
<СВD=<ADB;<ABD=<BDC;
BD-общая сторона
Треугольники равны,а значит равны АС=АD
Номер 3
Треугольники равны по первому признаку равенства треугольников-по двум сторонам и углу между ними
АВ=АD;<BAC=<DAC;по условию задачи
АС-общая сторона
Т к доказано равенства треугольников,то и
<АСD=<ACB
Объяснение:
Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°).
Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180°
х+ х+2·(х-15°)=180°
4х=210°
х=52,5°
х-15°=52,5-15=37,5°
Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой.
ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°