Сумма углов треугольника равна 180°.
В ΔABC:
∠A+∠B+∠C = 180°;
∠B = 180°-(∠A+∠C) = 180°-(60°+40°) = 80°.
Биссектриса делит угол пополам.
∠DBC = ∠ABC:2 = 80°:2 = 40°, как угол при биссектрисе BD.
Если в треугольника два угла равны, то он равнобедренный.
∠DBC = 40° = ∠DCB ⇒ ΔDBC - равнобедренный, ч.т.д.
Стороны треугольника, лежащие напротив равных углов, равны.
В ΔDBC:
сторона BD лежит напротив ∠DCB;
сторона DC лежит напротив ∠DBC;
∠DBC = ∠DCB ⇒ BD = DC.
ответ: BD = DC.
Объяснение: поставьте ответ лучшим
паралелограм АВСД, бісектриса АЕ, ВЕ=35,5, ЕС=17,5, ВС=АД=ВЕ+ЕС=35,5+17,5=53, кутЕАД=кутАЕВ як внутрішні різносторонні=кутВАЕ, трикутник АВЕ рівнобедрений, АВ=ВЕ=35,5=СД, периметр=2*(АВ+ВС)=2*(35,5+53)=177,
або ВЕ=17,5, ЕС=35,5, тоді по тій же схемі, АВ=СД=17,5, периметр=2*(17,5+53)=141,
відповідь б)