перейде точка À точка C. 2) на кут 120° протигодинникової стрілки. перейде точка E точкаB. 1088. Дано відрізок і точку O, яка ал. 214. йому не належить.
Äî § 21 ГЕОМЕТРІ ЕРЕТВОРЕ 1087. –правильний шестикутник (мал. 214). У якуточку при повороті навколо точки O: 1) на кут60° за годинниковою стрілкою перейде точкаÀ точка C 2) на кут 120° проти годинниковоїстрілки перейде точка E точка B 1088. Дано відрізок і точку O, яка ал. 214 йому не належить. Побудуйте відрізок A′B′, у якийперейде відрізок при повороті навколо точкиO: 1) на 90° проти годинникової стрілки 2) на 20° за годинник
Дана правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a = 2√3 см.
Проведём осевое сечение через 2 боковых ребра.
В сечении равнобедренный треугольник АSС с боковыми сторонами L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.
Высота Н пирамиды равна:
Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.
Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру.
В сечении - треугольник ВКД.
Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.
КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.
То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.
Отсюда искомый угол ВКД равен 2*60 = 120 градусов.
По теореме косинусов из треугольника АВС
АВ²=BC²+AC²-2·BC·AC·cos∠BCA
Пусть ВС=х
7²=x²+(7√3)²-2·x·7√3·(√3/2)
x²-21x+98=0
D=(-21)²-4·98=441-392=49
x=(21-7)/2=7 или х=(21+7)/2=14
Если ВС=7, то треугольник АВС - равнобедренный АВ=ВС=7 и
∠ВАС=ВСА=30°
Тогда ∠A=60° ∠B=180°-60°=120° ( cумма углов, прилежащих к боковой стороне трапеции равна 180°)
Если BC=14, то треугольник АВС - прямоугольный, так как
АВ²+АС²=ВС²
7²+(7√3)²=14²
49+49·3=49·4 - верно
∠ВАС=90°
∠А=∠ВАС+∠СAD=90°+30°=120°
∠B=180°-120°=60°( cумма углов, прилежащих к боковой стороне трапеции равна 180°)
ответ. ∠А=60°; ∠В=120° или ∠А=120°; ∠В=60°
Углы С и D невозможно найти
Можно ответить на вопрос задачи только в том случае, если трапеция равнобедренная.
Тогда углы трапеции
60°;120°;60°; 120°.