М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Усварппоры
Усварппоры
18.04.2023 09:13 •  Геометрия

Длина стороны ав треугольника авс составляет 40% от его периметра, а длина стороны вс - 70% от длины стороны ав. длина стороны ав на 2 см больше, чем длина стороны ас. сколько процентов составляет длина стороны ас от периметра треугольника авс? , найдите периметр треугольника авс?

👇
Ответ:
lenadanilova77
lenadanilova77
18.04.2023
Пусть    АС=х
АВ=(x+2)
BC=0,7AB=0,7(x+2)

P=AB+BC+AC=(x+2)+0,7(x+2)+x=2,7x+3,4

По условию   длина стороны АВ =(х+2) составляет 40% от  периметра (2,7х+3,4)
Составим уравнение
х+2=0,4·(2,7х +3,4)
х+2=1,08х+1,36
0,08х=0,64
х=8

Р=2,7x+2=2,7·8 + 3,4=25 см

25   составляют 100%
8   составляют х %

х=8·100:25=32%

ответ. АС составляет 32% от периметра
            Р=25 см
4,4(48 оценок)
Открыть все ответы
Ответ:
Рассмотрим сечение образованное высотой конуса, его образующей и радиусом основания. Это прямоугольный треугольник, в котором гипотенуза (образующая) равна 8, а острый угол между радиусом и образующей равен 30 градусов. Тогда высота конуса Н равна половине гипотенузы, т.е 4, а радиус основания равен гипотенуза умножить на косинус 30 градусов, т.е 4 корня из 3. 
Объем конуса равен трети площади основания на высоту. В основании круг, т.е его площадь равна Пи умножить на радиус в квадрате, т.е 48 Пи. Тогда Подставляем все найденные величины в формулу и получаем: 
V = 1/3 * 48 Пи * 4 = 64 Пи (кубических единиц). 
ответ: 64 Пи.
4,6(2 оценок)
Ответ:
Так как по условию ПРАВИЛЬНЫАЯ треугольная пирамида, то в основании лежит правильный треугольник.
S_o= \frac{a^2 \sqrt{3} }{4} = \frac{6^2 \sqrt{3} }{4} =9 \sqrt{3} - площадь основания

Найдем площадь боковой поверхности.
Так как сторона основания есть, то радиус вписанной окружности
r=a/2√3=6/2√3 = √3 см
С прямоугольного треугольника апофема равна
f= \sqrt{10^2+3} = \sqrt{103} см

Площадь боковой поверхности:  S_b=3\cdot \frac{a\cdot f}{2} =9 \sqrt{103}

Sп=S_o+S_b=9\sqrt{3}+9\sqrt{103}

ответ: 9\sqrt{3}+9\sqrt{103}

Вторая задачка

С прямоугольного треугольника радиус вписанной окружности(основания)
r= \sqrt{5^2-4^2} =3
По определению радиусу вписанной окружности правильного треугольника
сторона основания равна
r= \frac{a}{2 \sqrt{3} } \\ a=2 \sqrt{3} r=6 \sqrt{3}

S_b= 3\cdot \frac{a\cdot h}{2} =3\cdot \frac{6\sqrt{3}\cdot 5}{2} =45\sqrt{3}

ответ: 45\sqrt{3}
4,8(36 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ