Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
По теореме Пифагора
10²=6²+(АК)²
(АК)²=64
АК=8
ВС=АВ=10 (боковые стороны в равнобедренном треугольнике равны)
КС=ВС-ВК=10-6=4
треугольник АКС прямоугольный
По теореме Пифагора
(АС)²=8²+4²=80
АС=√80=4√5
ответ: 8; 4√5