Чтобы доказать эту теорему, построим два прямоугольных гольника ABC и А'В'С', у которых углы А и А' равны, гипотенузы АВ и А'В' также равны, а углы С и С' — прямые
Наложим треугольник А'В'С' на треугольник ABC так, чтобы вершина А' совпала с вершиной А, гипотенуза А'В' — с равной гипотенузой АВ. Тогда вследствие равенства углов A и А' катет А'С' пойдёт по катету АС; катет В'С' совместится с катетом ВС: оба они перпендикуляры, проведённые к одной прямой АС из одной точки В. Значит, вершины С и С' совместятся.
Треугольник ABC совместился с треугольником А'В'С'.
Следовательно, тр. АВС = тр. А'В'С'.
Пусть с - сторона ромба, х - отрезок ВК, В - угол СВА ромба.
Тогда площадь робма равна
с^2*sin(B) = 18;
А площадь отсеченного треугольника
(1/2)*x^2*sin(B) = 1;
отсюда
x = c/3; (при этом, само собой, АК = 2*с/3;)
Пусть O - точка пересечения диагоналей (и центр вписанной в ромб окружности).
Прямоугольные треугольники ВОК и АВО подобны, и угол ВОК = угол ВАО (то есть угол ВАС :)) Обозначим его за Ф.
Пусть ВО = а, тогда
x/a = a/c = sin(Ф);
Легко видеть, что
с^2/3 = a^2; a/c = корень(3)/3;
То есть sin(Ф) = корень(3)/3;