Пусть ВД -- высота, проведённая к основанию, ΔАВД -- прямоугольный, ВД^2=13^2-5^2=12 S(ΔABC)=1/2*10*12=60 Площадь этого же треугольника можно найти как половина произведения боковой стороны на высоту, проведённую к ней, имеем 1/2*13*h=60, h=120/13 высота, проведённая к боковой стороне
Во первых, уточним, что прямая р лежит в ОДНОЙ плоскости с треугольником АВС. Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну". Следствие из этой аксиомы: Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного. Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых. Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB.
Пусть из квадрата АВСD отрезали треугольник МСК. При совмещении треугольника и квадрата получили пятиугольник АВNKD, причем его наименьшая сторона NB, которую и нужно найти. Обозначим стороны отрезаемого треугольника CK=CM=x. После присоединения эти же стороны стали называться BN=MN=х. Искомую сторону BN обозначена за х. Так как СМ=х, то ВМ=1-х. Но сторона BM совмещалась со стороной MK, поэтому MK=1-х. Применяем для треугольника МСК теорему Пифагора: Отрицательной сторона быть не может, поэтому оставляем только положительный корень . ответ:
S(ΔABC)=1/2*10*12=60
Площадь этого же треугольника можно найти как половина произведения боковой стороны на высоту, проведённую к ней, имеем 1/2*13*h=60, h=120/13 высота, проведённая к боковой стороне