1) В прямоугольнике все углы прямые. Пусть один острый угол pk°, второй qk°. pk+qk=90 k=90/(p+q) Один угол 90p/(p+q) градусов, второй 90q/(p+q) градусов. Стороны прямоугольника d·cos(90p/(p+q) ) и d·cos(90q/(p+q) )
Р=2·(d·cos(90p/(p+q) ) + d·cos(90q/(p+q) ))
2) Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
1) В прямоугольнике все углы прямые. Пусть один острый угол pk°, второй qk°. pk+qk=90 k=90/(p+q) Один угол 90p/(p+q) градусов, второй 90q/(p+q) градусов. Стороны прямоугольника d·cos(90p/(p+q) ) и d·cos(90q/(p+q) )
Р=2·(d·cos(90p/(p+q) ) + d·cos(90q/(p+q) ))
2) Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
ВС=8см
угол В=120
АС-?
АС2=АВ2+ВС2-2*АВ*ВС*cosB
АС2=49+64-112*(-0,5)=113+56=169
АС=13см