М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
niuaki
niuaki
16.11.2021 09:14 •  Геометрия

Сформулируйте признак равенства треугольников по стороне и двум угла

👇
Ответ:
wiwivvv
wiwivvv
16.11.2021
Если сторона и два угла одного треугольника соответственно равны стороне и двум углам другого треугольника то эти треугольники равны
4,8(93 оценок)
Ответ:
dodpddpfp
dodpddpfp
16.11.2021
Треугольник АВС и треугольник А1В1С1 равны по стороне и двум прилежащим к ней углам. Отрываем треугольник АВС. Точку А совмещаем с точкой А1. Луч АС совмещаем с лучом А1С1. Но отрезок АС равен отрезку А1С1. А на данной полупрямой от её начала можно отложить только один отрезок данной линейной меры, значит, точка С совпадет с точкой С1. Но угол А равен углу А1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч АВ пойдёт по лучу А1В1. Но угол С равен углу С1, а от данной полупрямой в данной полуплоскости можно отложить только один угол данной градусной меры, значит луч ВС пойдёт по лучу В1С1. А две прямые пересекаются только в одной точке. Лучи АВ и ВС и лучи А1В1 и В1С1 пресекутся в одной точке. Треугольники совпали всеми своими точками. Значит они равны. Теорема доказана
4,5(7 оценок)
Открыть все ответы
Ответ:
myafyanya
myafyanya
16.11.2021

Дано:

ABCD-параллелограмм

BC=31

∠C=45°

AB=BD

Найти:  Sabcd

1. У параллелограмма противоположные углы равны, значит ∠C=∠A=45°

2. Проведём высоту с вершины B к основанию AD (назовем ее BH)

3. ∠B=180°-90°-45°=45°. Значит, ΔABH-равнобедренный

4. Рассмотрим ΔBHD. ∠HBD=45°, так как противоположные углы параллелограмма равны. Сумма углов параллелограмма равна 360°. ∠B=∠D=360°-45°-45°/2 =135°. Весь ∠B=135°, его части (∠ABH и ∠DBC=45°, значит ∠HBD=135°-45°-45°=45°)

5. Так как ∠HBD=45°, ∠BHD=45°, то ∠BDH=180°-90°-45°=45°.

6. Рассмотрим ΔABD-он равнобедренный, значит BH- и высота, и медиана, и биссектриса. AH=HD

7. BC=AD=31 (по определению параллелограмма)

8. AH=31/2=15,5

9. Так как ΔABH-равнобедренный, то BH=AH=15,5

10. Sabcd=AD*BH=31*15,5=480,5

ответ: Sabcd=480,5

4,4(86 оценок)
Ответ:
Savasansa
Savasansa
16.11.2021

Через точку А проведём плоскость, параллельную заданной.

Общее уравнение заданной плоскости имеет вид:

Ax+By+Cz+D=0                          (2)

Все параллельные плоскости имеют коллинеарные нормальные векторы. Поэтому для построения параллельной к (2) плоскости, проходящей через точку M0(x0, y0, z0) нужно взять в качестве нормального вектора искомой плоскости, нормальный вектор n=(A, B, C) плоскости (2). Далее нужно найти такое значение D, при котором точка M0(x0, y0, z0) удовлетворяла уравнению плоскости (2):

Ax0+By0+Cz0+D=0. (3)

Решим (3) относительно D:

D=−(Ax0+By0+Cz0) (4)

Из уравнения (1) запишем координаты нормального вектора :

A= 1 , B= 1 , C= −1 .

Подставляя координаты точки А и координаты нормального вектора в (4), получим:

D=−(Ax0+By0+Cz0)=− 1  ·  1  +  ( −1)  ·  1  +  1  · (−1) = 1

Подставляя значения A, B, C, D в (2), получим уравнение плоскости, проходящей через точку А(1, -1, 1) и параллельной плоскости (1):

 x+ y −  z+ 1 =0.

Теперь найдём точку пересечения новой плоскости с заданной прямой.

Надо решить систему, разложив уравнение прямой:

{x+ y −  z+ 1 =0,

{x = 2y - 6,

{z = -y + 3.

Подставим в первое уравнение x и z:

2y - 6 + y + y - 3 + 1 = 0,

4y = 8,. y = 8/4 = 2.

x = 2*2 - 6 = -2,

z = -2 + 3 = 1.

Получили уравнение точки Р, лежащей в плоскости, параллельной заданной: Р(-2; 2; 1). Вектор АР(-3; 3; 0).

Воспользуемся формулой канонического уравнения прямой:

x - xa xb - xa  =   y - ya yb - ya  =   z - za zb - za  

Так как: zb - za = 0, то уравнение прямой в каноническом виде записать нельзя.

Составим параметрическое уравнение прямой

Воспользуемся формулой параметрического уравнения прямой:

x = l t + x1

y = m t + y1

z = n t + z1

 где:

{l; m; n} - направляющий вектор прямой, в качестве которого можно взять вектор AB;

(x1, y1, z1) - координаты точки лежащей на прямой, в качестве которых можно взять координаты точки A.

AB = {xb - xa; yb - ya; zb - za} = {-2 - 1; 2 - (-1); 1 - 1} = {-3; 3; 0}

В итоге получено параметрическое уравнение прямой:

x = - 3t + 1

y = 3t - 1

x = 1.

4,4(53 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ