Внутри равнобедренного треугольника bcd с основанием bd взята точка а, так,что ab=ad. а] докажите, что угол acb равен углу acd. б] проведите медиану ak треугольника bad. лежат ли точки с,a и к на одной прямой. ответ поясните.
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
Здесь нужно применить формулу нахождения площади через диагонали. S=1/2 D1*D2* sinα, где D 1 и 2 - диагонали, альфа - угол между ними. Теория: Диагонали прямоугольника равны и точкой пересечения делятся пополам. Дано: АВСД - прямоугольник. О - точка пересечения диагоналей АС и ВД. ∠ВАС=5*∠CАД Найти: S-? Решение: ∠ВАС+∠САД=90° 5*∠САД+∠САД=90 6*∠САД=90 ∠САД=15° ∠ВАС=75° АВО - равнобедренный треугольник ∠А=∠В=75°. ∠С=180-(75+75)=30°. Это и есть угол между диагоналями. Синус 30 град. = 1/2. Теперь, S=1/2 *6*6* 1/2=⇒ S=9
Согласно обратной теореме Фалеса, прямая ED параллельна прямой BC. Пусть F - точка пересечения прямых ED и AM. Треугольник AED - равнобедренный (AE=AD, т.к. ЕС и ВD - медианы треугольника ВАС.). Рассмотрим треугольники AEF и AFD: AE=AD, т.к. ЕС и ВD - медианы треугольника ВАС. AF - общая сторона углы AED и ADE равны как углы равнобедренного треугольника AED. Следовательно треугольники EFA и AFD равны по первому признаку. Значит AF является для этого треугольника биссектриссой, медианой и высотой. Отсюда следует, что AF⊥ED. Т.к. точка Fявляется точкой пересечения прямых ED и AM( F∈AM), то прямая AM⊥ED и т.к. ED║BC, то AM⊥BC.
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.