Расстояние от точки до сторон квадрата равно 13 см. Найдите расстояние от точки до плоскости квадрата, если сторона квадрата равна 10 см. можете объяснить, с рисунком
Объяснение:
Расстояние от точки Т до плоскости отрезок ТО ⊥ ( АВС) . Значит ТО перпендикулярен любой прямой лежащей в плоскости.
Т.к. расстояние -это перпендикуляр, то опустим перпендикуляры из точки Т на стороны квадрата : ТН₁ , ТН₂ , ТН₃ , ТН₄. Тогда прямоугольные треугольники ( на рисунке желтые) равны по катету и гипотенузе ( апофема боковой грани).⇒точка О -центр вписанной окружности и еще т. пересечения диагоналей квадрата.
Н₁ Н₃= 10 , ОН₁=5 , из ΔТОН₁ , по т. Пифагора ТО=√(13³-5²)=√144=12 (см)
ВН+НС=ВС
3х+х=40
4х=40
х=10 см
НС=10 см
По теореме косинусов из треугольника АВС:
АВ²=АС²+ВС²-2·АС·ВС·cos∠C
40²=20²+40²-2·20·40·cos∠C ⇒ cos ∠C=1/4
По теореме косинусов из треугольника АHС:
АH²=АС²+HС²-2·АС·HС·cos∠C
AH²=20²+10²-2·20·10·cos∠C
AH²=400+100-100=400
AH=20 см