В равнобедренном треугольнике угол с градусной мерой в 120 градусов будет являться лежащим напротив основания данного треугольника, а оставшиеся два, равных друг другу угла (т.к. они лежат у основания этого треугольника), будут равны (180-120):2=30 градусов. Значит, высота, опущенная к основанию равнобедренного треугольника, будет являться катетом в равнобедренном треугольнике. Эта высота лежит напротив угла в 30 градусов, т.е. она равна половине гипотенузы прямоугольного треугольника. Сама высота проведена к середине основания, т.к. проведена из тупого угла в равнобедренном треугольнике. Значит, отрезок, соединяющий середины боковой стороны(гипотенузы) и основания, будет проведён из прямого угла в прямоугольном треугольнике к середине его гипотенузы. Значит, этот отрезок является медианой в прямоугольном треугольнике, проведённой из прямого угла. А как мы все знаем, медиана, проведённая из вершины прямого угла к гипотенузе, равна половине этой же гипотенузы. То есть искомый нами отрезок равен высоте, значение которой нам известно. Таким образом, отрезок равен 3-ём см. ответ: 3 см.
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
Значит, высота, опущенная к основанию равнобедренного треугольника, будет являться катетом в равнобедренном треугольнике. Эта высота лежит напротив угла в 30 градусов, т.е. она равна половине гипотенузы прямоугольного треугольника.
Сама высота проведена к середине основания, т.к. проведена из тупого угла в равнобедренном треугольнике. Значит, отрезок, соединяющий середины боковой стороны(гипотенузы) и основания, будет проведён из прямого угла в прямоугольном треугольнике к середине его гипотенузы.
Значит, этот отрезок является медианой в прямоугольном треугольнике, проведённой из прямого угла. А как мы все знаем, медиана, проведённая из вершины прямого угла к гипотенузе, равна половине этой же гипотенузы. То есть искомый нами отрезок равен высоте, значение которой нам известно.
Таким образом, отрезок равен 3-ём см.
ответ: 3 см.