1)<MCP=65 =><DCP=65, т.к. СР-биссектриса <MCD=> => <BCM=180-2*65=50(град) 2)<MBC=<NMB как накрест лежащие <NMB=<BMC, т.к. МВ-биссектриса <NMC => => ΔMBC - равнобедренный, в нём <MBC=<BMC=(180-50):2=65 град ответ: 65 градусов
Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .
Пирамида имеет в основании квадрат или правильный треугольник?
1. поверхность грани 96/4=24 длина стороны основания 24/4=6 апофема равна высоте к стороне основания, апофему обозначим а
0,5*6*а=24 а=24/3=8
2. поверхность 96/3=32 сторона основания 24/3=8 0,5*8*а=32 а=32/4=8
видим равенство апофем, более детально - пусть n боковых граней, s = 96/n сторона основания 24/n 0.5*24/n*a=96/n 12a=96 a=8
видим, что можно дать другие числа, а не 96 и 24 и посчитать апофему, она не будет зависеть от числа сторон правильной пирамиды, а только от конкретных значений площади боковых граней и периметра основания.
=> <BCM=180-2*65=50(град)
2)<MBC=<NMB как накрест лежащие
<NMB=<BMC, т.к. МВ-биссектриса <NMC =>
=> ΔMBC - равнобедренный, в нём <MBC=<BMC=(180-50):2=65 град
ответ: 65 градусов