6. Диагонали ромба являются также биссектрисами его углов (делят углы ромба пополам). 7. Диагонали делят ромб на четыре равных прямоугольных треугольника.
Задача №3 См. рис. 3. BC || AD, AB и CD — бёдра трапеции. Докажем, что AB=CD.
Если вокруг четырёхугольника можно описать окружность, то сумма противоположных углов равна 180° (необходимое условие). То есть ∠A+∠C=∠B+∠D=180°.
С другой стороны, сумма углов, прилежащих к боковым сторонам трапеции, равна 180° (по теореме о параллельных прямых BC и AD и секущей AB). Следовательно, ∠A+∠B=∠C+∠D=180°.
Сопоставив эти равенства, получим, что ∠A=∠D и ∠B=∠C. Является ли это доказательством, что трапеция равнобедренная? Я не помню, изучают ли в школе эту теорему, поэтому на всякий случай докажу.
Проведём высоты BE и CF (см. рис. 4). Они равны, так как все высоты трапеции равны. Поэтому прямоугольные треугольники ABE и DFC равны (по острому углу и катету). Значит, равны их гипотенузы — AB и CD, что и требовалось доказать.
(x-a)^2+(y-b)^2=R^2, где
(a,b) - радиус окружности, R -радиус.
Значит, радиус заданной окружности (2,-4), радиус - √20=2√5
Чтобы проверить, проходит ли укружность через начало координат, подставим в уравнение (0;0)
(0-2)^2+(0+4)^2=20
2^2+4^2=20
4+16=20
20=20
Значит, окружность проходит через начало координат