1)
Нарисуем треугольник - осевое сечение конуса. Обозначим его АСВ.
АСВ - равнобедренный прямоугольный треугольник. СВ=d - диагонали квадрата со стороной НВ.
d=а√2
СВ=а√2=4√2, => НВ=4
Площадь полной поверхности конуса равна сумме площади основания и боковой площади.
Sоснов=π r²=π*4²=16π
Sбок= произведению половины длины окружности (2π r):2 на образующую.
Sбок =π r l= π 4*4√2=16√2π
S полная =16π+16√2π=16π(1+√2)
-----------------------------------------------
2)
На рисунке - основание цилиндра.
Треугольник НOD прямоугольный с углом при вершине D=30°, т.к противолежащий катет ОН=половине радиуса r.
НD=ОD*cos(30°)=r(√3):2
CD=cторона сечения=2НD=2r(√3):2=r√3
Площадь сечения - площадь квадрата со стороной CD = 108 см²
CD=√108=6√3
r√3=6√3
r=6
Площадь полной поверхности цилиндра равна сумме площади основания и площади боковой поверхности.
Найдите площадь основания по формуле
S осн=π r²=36π см²
Площадь боковой поверхности цилиндра равна произведению длины окружности на его высоту ( высота равна стороне сечения)
S бок=h* 2 π r=12 π √3
S полн=36π+12 π √3=12π(3+√3)см²
ответ: 60 градусов.
Объяснение: Для нахождения угла, образованного высотой и основанием равнобедренного треугольника разделим длину высоты на длину боковой стороны и получим косинус угла: 53/106=0,5. Косинус 0,5 соответствует углу 30 градусов. В равнобедренном треугольнике высота, биссектриса и медиана, проведенные из вершины угла совпадают. Значит угол при вершине будет 30х2=60 градусов. Сумма двух других углов при основании равна 180-60=120 градусов. Величина одного угла будет равна 120/2=60 градусов. В этом треугольнике все углы по 60 градусов