Построим равнобедренный треугольник АВС с основание АС. Как сказано в условии, продлим основание в обе стороны на равные расстояния (точки Д и Е)
Докажем что треугольники АВД и СВД равные: АВ=ВС (так как АВС равнобедренный) АД=СЕ (по условию задачи) Угол ВАД=180-ВАС (как смежные) Угол ВСЕ=180-ВСА (как смежные) Так как углы ВАС=ВСА (как углы при основании равнобедренного треугольника), то и углы ВАД=ВСЕ. Треугольники АВД и СВД равные по первому признаку равенства (по двум сторонам и углу между ними). Значит ВД=ВЕ. Это доказывает что треугольник ВЕД - равнобедренный
Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
чтобы найти объем прямоугольного бака нужно плошадь основания умножиьь на высоту
v=s×h
h=v/s
s=2.5×1.75=4.375
h=10/4.375~2.29