Чтобы узнать, существует ли такой треугольник со сторонам 3; 3; 8 — надо сравнить каждую сторону с суммой друх других сторон: 8+3 = 11.
Каждая сумма двух сторон должна быть больше каждой стороны, чтобы такой треугольник существовал.
Сумма боковый сторон — 3+3 = 6, которая меньше стороны 8, тоесть треугольник со сторонами 3; 3; 8 — не существует.
Теперь представим, что боковые стороны равны 8; 8, а основание — 3.
3+8 = 11 > 3;
8+8 = 16 > 3
8+3 = 11 > 3.
В этом случае, треугольник сущестует, а основание — 3, боковые стороны — 8; 8.
1) 2см
2) верно
3) 4см
Объяснение:
Для начала заметим, что AO = DO = CO = BO - это радиусы окружности.
Далее, угол AOD = угол COB - вертикальные.
Треугольник AOD = треугольнику COB (так как AO = OC, OD = OB и угол AOD = углу COB(первый признак равенства треугольников)), отсюда AD = BC = 2 см.
К тому же треугольники AOD и COB - равнобедренные, значит
угол OAD = угол ADO = угол OCB = угол OBC
Рассмотрим угол DAO = угол OBC - они накрест-лежащие и равны, значит AD параллельна CB
в) если угол AOD = 60 градусов, а мы выяснили, что треугольник AOD - равнобедренный то угол OAD = (180-60)/2 = 60 =угол ADO, следовательно треугольник ADO - равносторонний и AD = AO = OD, поэтому AO = AD = 2, но AO - радиус, значит диаметр равен AB = AO*2 = 2см*2=4 см