Сторона правильного шестиугольника равна 10, найти наибольшую диагональ шестиугольника сторона правильного шестиугольника равна а. найти наименьшую диагональ
X,y - основания трапеции a - боковая сторона h - высота, h=4/5a 2a+x+y=64- периметр трапеции Рассм. треугольник, образованный высотой трапеции h, боковой стороной a: основание треугольника - (y-x)/2, тк по условию задачи, y-x=18, то основание треугольника равно 9. по теореме пифагора, 81=a*a+h*h 81=a*a+16/25a*a, отсюда получаем, что а=15. h=4/5*15=12 Из уравнения 2a+x+y=64 и y-x=18, находим, что основания трапеции х и у равны 8 и 26 соотвественно. Площадь трапеции равна полусумме оснований на высоту, т.е. 0,5*12*(8+26)=204