1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение:
Предположим, это треугольник ABC, в котором угол А тупой, а из угла В опущена высота на основание АС. Если продлить основание АС, то высота пересечется с продленным основанием в точке, которую назовем Н. Тогда по условию угол НВА=14 градусов, а угол НВС=38 градусов.
Угол ВНС=90 градусов.
АВС=НВС-НВА, следовательно, АВС=38-14=24 градуса.
В прямоугольном треугольнике НВС сумма углов составляет 180 градусов. Следовательно, ВСА=ВСН=180-38-90=52 градуса
В треугольнике АВС сумма углов равна 180 градусов, следовательно, ВАС= 180-52-24=104 градуса
Объяснение:
АТРС-равнобедренная трапеция. У трапеции, описанной около четырехугольника (трапеции в нашем случае) сумма противоположных сторон равна.
ТР+АС=30/2=15
АС=12см, тогда ТР=15-12=3см
АТ+РС=15 и так как АТ=РС, то АТ=РС=15/2=7,5см
Диаметр окружности является ее высотой ТН (опусти перпендикуляр из Т на АС).
АН=(АС-ТР)/2=(15-12)/2=4,5см
По теоремме пифагора:
ТН=√(АТ^2-AH^2)=√(56,25-20,25)=√36=6см
ТН-это диаметр, а радиус равен его половине, т.е.
r=ТР/2=6/2=3см