М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
skolzkov200441
skolzkov200441
04.06.2021 01:09 •  Геометрия

Точка f - середина ребра d1c1 куба abcda1b1c1d1. найдите расстояние от точки c1 до плоскости bdf, если длина ребра куба равна a. ответ а/3. нужно решение, выручайте)

👇
Ответ:
olganedbaylova
olganedbaylova
04.06.2021
Прямая FF₁ параллельна гипотенузе основания ВД.
Сечение куба плоскостью BDF - равнобокая трапеция ВДFF₁.
Проведём плоскость, перпендикулярную ВДFF₁, через диагональ куба АС₁. Линия пересечения этой плоскости и BDF - это высота ОF₀ трапеции ВДFF₁.
Отрезок С₁F₀ равен (а/2)*cos45° = (a/2)*(√2/2) = a√2/4 =
= a/(2√2).
Половина диагонали ОС равна а√2/2 = а/√2, то есть она в 2 раза больше С₁F₀.
Высота ОF₀ равна √((а/(2√2))²+а²) = √(а²/8)+а²) = 3а/(2√2).
Если продлить ОF₀ до пересечения с продолжением ребра СС₁, то искомое расстояние от точки С₁ до плоскости ВДF - это высота из точки С₁ на продолжение отрезка ОF₀.
Здесь образуется прямоугольный треугольник С₁F₀С₂.
Гипотенуза F₀С₂ равна ОF₀.
Тогда искомое расстояние как высота из прямого угла равна:
h = ab/c, где а и в - катеты, а с - гипотенуза.
h = (a*(a/2√2))/(3а/(2√2)) = a/3.
4,7(13 оценок)
Открыть все ответы
Ответ:
Helpppppp11
Helpppppp11
04.06.2021
Δ ABC - правильный ⇒ АВ=ВС=АС и ∠А=∠В=∠С=60°
DB=DA=DC=6 ⇒  равные наклонные имеют равные проекции
NB=NA=NC ⇒ N - центр описанной окружности

∠ADN=∠BDN=CDN=30°

Из прямоугольного треугольника АDN
R=AN=3 - катет против угла в 30° градусов равен половине гипотенузы.
H(пирамиды)=DN=√(6²-3²)=√27=3√3 cм.
По формуле нахождения радиуса R окружности, описанной около равностороннего треугольника cо стороной а:
R=(a√3)/3  легко найти сторону треугольника.

3=(a√3)/3  ⇒a=3√3 см.

S(ΔABC)=(1/2)·a·a·sin60°=(a²√3)/4

При а=3√3
S(ΔABC)=(27√3)/4  - площадь основания

Для равностороннего треугольника N- является и центром вписанной окружности

NL=NK=r

r=(a√3)/6=3/2
Из Δ DNL по теореме Пифагора апофема боковой грани

h=DL=√(DN²+NL²)=√(27+(9/4))=3√10/2.

S (бок)=(1/2)·Р ( осн.) ·Н=(1/2)·(9√3·)(3√3)=81/2=40,5  кв см.

О т в е т.3√3 см; 40,5 кв. см

Найдите площадь основания и площадь боковой поверхности правильной n-угольной пирамиды,если n=3,боко
4,8(75 оценок)
Ответ:
dionakavinep08o5z
dionakavinep08o5z
04.06.2021
Δ ABC - правильный ⇒ АВ=ВС=АС и ∠А=∠В=∠С=60°
DB=DA=DC=6 ⇒  равные наклонные имеют равные проекции
NB=NA=NC ⇒ N - центр описанной окружности

∠ADN=∠BDN=CDN=30°

Из прямоугольного треугольника АDN
R=AN=3 - катет против угла в 30° градусов равен половине гипотенузы.
H(пирамиды)=DN=√(6²-3²)=√27=3√3 cм.
По формуле нахождения радиуса R окружности, описанной около равностороннего треугольника cо стороной а:
R=(a√3)/3  легко найти сторону треугольника.

3=(a√3)/3  ⇒a=3√3 см.

S(ΔABC)=(1/2)·a·a·sin60°=(a²√3)/4

При а=3√3
S(ΔABC)=(27√3)/4  - площадь основания

Для равностороннего треугольника N- является и центром вписанной окружности

NL=NK=r

r=(a√3)/6=3/2
Из Δ DNL по теореме Пифагора апофема боковой грани

h=DL=√(DN²+NL²)=√(27+(9/4))=3√10/2.

S (бок)=(1/2)·Р ( осн.) ·Н=(1/2)·(9√3·)(3√3)=81/2=40,5  кв см.

О т в е т.3√3 см; 40,5 кв. см

Найдите площадь основания и площадь боковой поверхности правильной n-угольной пирамиды,если n=3,боко
4,6(66 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ