пусть ad> bc , тогда острые углы равные 75 и 15 гр лежат при оснований ad , положим что y,w середины сторон ab и cd соответственно , тогда yw средняя линия трапеции , значит ad+bc=2yw из условия мы знаем что yw равна либо 15 либо 7 , положим что ab и cd пересекаются в точке e , тогда aed=180-(75+15)=90 , положим также что z,x это середины сторон основании bc,ad соотвественно , пусть n точка пересечения yw и zx , тогда по замечательному свойству трапеции точки e,z,x лежат на одной прямой , учитывая что угол aed прямой , получаем что ax=ex=ad/2 , ez=bz=bc/2 , но так как ex=ez+zx откуда окончательно получаем две системы
{ad-bc=2*7
{ad+bc=2*15
или
{ad-bc=2*15
{ad+bc=2*7
подходит решение первой системы , так как они положительны , складывая получаем ad=22 , bc=8 , значит ответ bc=8.
ответ: (sin^2t-1)/(cos^2t-1) + tgt•ctgt=
=(sin^2t-sin^2t-cos^2t)/(cos^2t-sin^2t-cos^2t)+1=
=(-cos^2t/-sin^2t) +1=(cos^2t/sin^2t)+1=(cos^2t+sin^2t)/sin^2t=1/sin^2t. Это первое)
2 не смогла).
cos^2t-ctg^2t)/(sin^2t-tg^2t)
cos^2t-ctg^2t=cos^2t-cos^2t/sin^2t=(cos^2t*sin^2t-cos^2t)/sin^2t=
=(-cos^2t(1-sin^2t))/sin^2t=-cos^4t/sin^2t
sin^2t-tg^2t=sin^2t-sin^2t/cos^2t=(sin^2t*cos^2t-sin^2t)/cos^2t=
=(-sin^2t(1-cos^2t))/cos^2t=-sin^4t/cos^2t
-cos^4t/sin^2t:(-sin^4t/cos^2t)=cos^6t/sin^6t=ctg^6t. Это третье).
Объяснение:
, где a - сторона равностороннего треугольника.
ответ: 12.