Проведем 2 радиуса в точки пересечения хорды и окружности, у нас получается равнобедренный треугольник. Нам нужно найти угол О.
3+7=10 частей окружности
360:10=36гр равна 1 часть окружности
значит 3 части будут равны 36*3=108гр это меньшая часть окружности, так как угол О центральный он будет равен хорде, на которую опирается, то есть 108 гр.
Найдем остальные углы равнобедр. теугольника (180-108):2=36гр
Касательная всегда перпендикулярна радиусу, то есть угол между касательной и радиусом=90гр
90-36=54гр равен меньший угол между касательной и хордой
180-54=126гр больший угол между касательной и хордой
1. это геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки 2. это сумма длин всех его сторон 3.которые совпадают при наложении 4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы 5.это прямая, пересекающую другую прямую под углом 90 градусов 6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3 7.это прямая проходящая через вершину угла и делящая его пополам. 3 8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3 9.у которого две стороны равны 10.боковые 11.у которого все стороны равны 12. в равнобедренном треугольники углы при основании равны 13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой 14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны 15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны 16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны. 17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки 18. это точка, от которой расположены все точки окружности 19. отрезок соединяющий центр окружности с любой точкой окружности 20. это хорда проходящая через центр 21. это отрезок соединяющие любые две точки окружности
Середины сторон четырёхугольника являются вершинами параллелограмма (теорема Вариньона). (Док-во: рассмотрим треугольники, образованные сторонами трапеции и диагоналями как основаниями. Средняя линия треугольника параллельна основанию и равна его половине. Средние линии треугольников с общим основанием параллельны и равны. Если в четырехугольнике противоположные стороны попарно параллельны или равны, четырехугольник является параллелограммом.)
Диагонали равнобедренной трапеции равны. Диагонали данной трапеции перпендикулярны по условию. Если в четырехугольнике диагонали равны и перпендикулярны, параллелограмм Вариньона является квадратом. Отрезок, соединяющий середины оснований равнобедренной трапеции, является ee высотой. Отрезок, соединяющий середины боковых сторон трапеции, является ее средней линией. Высота и средняя линия данной трапеции равны как диагонали квадрата.
Проведем 2 радиуса в точки пересечения хорды и окружности, у нас получается равнобедренный треугольник. Нам нужно найти угол О.
3+7=10 частей окружности
360:10=36гр равна 1 часть окружности
значит 3 части будут равны 36*3=108гр это меньшая часть окружности, так как угол О центральный он будет равен хорде, на которую опирается, то есть 108 гр.
Найдем остальные углы равнобедр. теугольника (180-108):2=36гр
Касательная всегда перпендикулярна радиусу, то есть угол между касательной и радиусом=90гр
90-36=54гр равен меньший угол между касательной и хордой
180-54=126гр больший угол между касательной и хордой