М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mahachik7
mahachik7
31.05.2023 18:05 •  Геометрия

Сфера с диаметром 16 касается квадрата со стороной 12 в его центре. найдите расстояние от центра сферы до стороны квадрата

👇
Ответ:
eiapple02
eiapple02
31.05.2023
Это гипотенуза, катет - радиус (8) катет- половина стороны (6)
тогда sqrt(8^2+6^2)=10
4,7(55 оценок)
Открыть все ответы
Ответ:
Проблеск
Проблеск
31.05.2023

1) Концы отрезка, который не пересекает плоскость, отдалены от нее на 3 см и 8 см. Проекция отрезка на плоскость равна 12 см. Найти длину отрезка. 

-----

Обозначим отрезок АВ. Расстоянием от точки до плоскости является длина отрезка, проведенного к ней перпендикулярно. 

АА1 и ВВ1 перпендикулярны плоскости, следовательно, перпендикулярны В1А1. 

АА1║ВВ1, 

АВВ1А1 - прямоугольная трапеция. 

ВВ1=3 см.АА1=8 см,

ВС║В1А1 ⇒ А1С=ВВ1=3 см, АС=8-3=5 см. 

ВС=В1А1=12 см. 

Катеты прямоугольного ∆ АВС относятся как 5:12 - треугольник из Пифагоровых троек, ⇒гипотенуза АВ=13 см. 

                    * * *

2) Из точки, которая находится на расстоянии 6 см от плоскости, проведены две наклонные. Найти расстояние между основаниями наклонных, если угол между каждой наклонной и ее проекцией равен 30°, а угол между проекциями наклонных 120°. 

-------

Наклонные АВ и АС,  расстояние до плоскости АН=6 см,  ∠АВН=∠АСН=30°

ВН=СН=АН:tg30°=6√3

∆АНС равнобедренный, угол ВНС=120° ( дано). 

Проведем высоту НМ к основанию ВС. Высота в равнобедренном треугольнике - биссектриса и медиана. ⇒ ∆ ВНМ=∆ СНМ, ∠ВНМ=СНМ=60°

ВМ=ВН•sin60°=6√3•√3/2=9 

BC=2•BМ=18 см (по т.косинусов ВС также равно 18 см)

                     * * * 

3) Из вершины А прямоугольника АВСD со сторонами 7 см и 14 см к его плоскости проведен перпендикуляр АМ=7 см. Найти расстояние от точки М до прямых DС и DB.

--------

Примем АВ=14 см, АD=7 см. Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки до прямой. По т. о 3-х перпендикулярах МD пп DC, МВ пп ВС.

В прямоугольном ∆ MAD катеты равны, следовательно, он равнобедренный с острыми углами, равными 45°. 

MD=AD:sin45°=7√2.

Из прямоугольного ∆ МАВ расстояние МВ=√(AB²+AM²)=√(196+49)=7√5 см

Расстояние от М до BD отрезок МН, перпендикулярный диагонали ABCD.

По т. о 3-х перпендикулярах МН⊥DB,⇒ его проекция АН⊥DB.

АН=AD•AB:BD

∆ ADB=∆ MAB по двум катетам,⇒ DB=MB=7√5

AH=7•14:7√5=14/√5

MH=√(AM²+AH²)=√(441/5)=21/√5=4,2√5 или ≈ 9,39 см



3-й варіант 1. кінці відрізка, який не перетинає площину, віддалені від неї на 3 см і 8 см. проекція
4,5(46 оценок)
Ответ:
MDL123
MDL123
31.05.2023

Δ АВС - равнобедренный

ВК = 30 см - биссектриса к основанию АС, она же и медиана Δ АВС ⇒ АК=КС

NM = 16 см  - средняя линия II АС ⇒AN=NB

NK = ? - средняя линия II ВС 

 

NM x ВК в т.О и деляться ей пополам, т.к. Δ NMB подобен  Δ АВС по 3-м углам, ⇒ Δ NMB равнобедренный и ВО его высота, биссектриса и медиана. 

ВО=ВК т.к. NM средняя линия  Δ АВС

Получаем

NO=1/2NM= 16/2=8

OK=1/2ВК= 30/2=15

Δ NOK прямоугольный, т.к. уже доказано, что BO высота Δ NMB ⇒ <BON = 90°

<NOK - смежный и =180°-<BON = 90°

По теореме Пифагора находим NK - гипотенузу Δ NOK 

NK=√(NO²+OK²) = √(8²+15²)=√(64+225)=√289=17 см

 


Средняя линия равнобедренного треугольника,параллельная основанию,равна 16 см,а биссектриса,проведен
4,4(63 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ