Средняя линия трапеции является сумой основ, деленной пополам. то есть получается, что сумма основ - это две средние линии. так как нам надо периметр (сумма всех сторон), то нам не обязательно знать точное значение каждой стороны. сумма основ выходит две средние линии. средняя линия равна 4+7=11 см. сумма основ равно 11*2=22 см поскольку трапеция равнобокая, то в нее можно вписать круг. а круг можно вписать только тогда, когда сумма противоположных сторон равна. то есть сумма боковых должна равняться сумме основ. так как сумма основ у нас 22, то получается, что и сумма боковых 22. 22+22=44 см - периметр
Развернутый угол - угол, обе стороны которого лежат на прямой. градусная величина развернутого угла 180° если пересекаются две прямые, они образуют две пары неразвернутых углов. у каждой пары одна сторона общая, а две другие являются продолжением одна другой и вместе составляют развернутый угол. такие углы называются смежными, их сумма равна 180°. сумма данных углов равна 126°, следовательно, они не являются смежными. несмежные углы, образованные при пересечении двух прямых, – вертикальные и равны между собой. каждый из данных вертикальных углов равен половине их суммы: 126°: 2=63° смежные с ними углы - тоже неразвернутые и по отношению друг к другу - вертикальные. каждый из них равен 180°-63°=117° вариант решения. сумма углов, образованных пересечением двух прямых, равна 360° если сумма двух из них 126°, сумма двух других 360°-126°=234° поскольку углы попарно равны, величина меньших –126°: 2=63°, больших –117°.
1) Найдем диагональ ВД из тр-ка АВД по теореме косинусов:
BD^2=AB^2+AD^2-2*AB*AD*cosA; => BD^2=64+196-2*8*14*cos50=260-224*
*cos50.
2) Диагональ АС найдем из тр-ка АВС (угол В=180-50=130 градусов):
АС^2=AB^2+BC^2-2*AB*BC*cos(130)=64+196-2*6*14*cos(180-50)=260-224*
*(-cos50)=260+224*cos50
cos50 можно найти либо при таблиц Брадиса, либо при инженерного калькулятора