Теорема 2 (обрaтная). Диаметр, проведённый через середину хорды, не проходящей через центр, перпендикулярен к ней и делит дуги, стягиваемые хордой, пополам. Теорема 1. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам.
Я обозначаю MP = a = 24 и NK = b = 16 Пусть продолжения MN и KP пересекаются в точке Е. Высота MPE пусть равна H (это просто обозначение). Тогда высота NKE равна H*b/a, а высота трапеции h = H*(1 - b/a); Прямая AB делит высоту трапеции в той же пропорции, что и диагонали (и вообще любой прямой отрезок с концами на основаниях), то есть в отношении b/a; то есть на отрезки h*b/(a + b) и h*a/(a + b) (первый отрезок между NK и AB, второй - между MP и AB, в сумме они дают h, и относятся, как b/a) Отсюда высота треугольника ABE равна H - h*a/(a + b) = H*(1 - (a - b)/(a + b)) То есть отношение высот подобных треугольников ABE и MPE равно 1 - (a - b)/(a + b) = 4/5; (если подставить a = 24; b = 16) поэтому AB = MP*4/5 = 96/5 = 19,2
Задача 2 окружность разделена на 2 дуги -одна содаржит 4 части ,другая -5 частей ,следовательно обе дуги ,составляют 9 частей и360 градусов .Поэтому одна часть равна 360 :9= 40 градусов следовательно меньшая дуга равна 40х4= 160 градусов 2) Точки А и С -точки касания окружности с углом АВС из центра окружности проведем радиусы в точки касания они перпендикулярны сторонам угла АВС .3)угол АОС -центральный ,он измеряется дугой на которую опирается .уголАОС=160 градусов .4)соединим точки ОиВ прямой ОВ .эта прямая делитугол АВС пополам,уголВОС=80 ,УГОЛосв=90 ПОЭТОМУ УГОЛовс 10 градусов но ВО -биссектриса угла АВС следовательно АВС-20градусам (читай теорию про окружность)