площадь правильного треугольника по условию пирамида правильная, => высота пирамиды проектируется в центр треугольника - точка пересечения медиан, биссектрис, высот, которые в точке пересечение делятся в отношении 2:3 считая от вершины высота правильного треугольника вычисляется по формуле:
ΔAMO: AM=8, <MAO=60°, => <AMO=30° AO=AM/2 катет против угла 30° в 2 раза меньше гипотенузы. АО=4 OM²=AM²-AO², OM²=8²-4², OM=4√3
Соррян,рисунок не могу Внешний угол + угол вершины,при которой есть этот внешний угол =180° внеш угол -72° => угол вершины 180°-72°=108° Угол равный 108 градусам не при основании т.к сумма углов треуг равна 180° ,а если этот угол -угол при основании,то оба угла при основании должны быть по 108°,но такое невозможно в сумме 3 угла вершин треуг дают 180° один из углов равен 108° 2 угла при основании равны между собой=> эти два угла в сумме дают 180°-108°=72° и они равны => каждый из углов при основании равен по 36°
Соррян,рисунок не могу Внешний угол + угол вершины,при которой есть этот внешний угол =180° внеш угол -72° => угол вершины 180°-72°=108° Угол равный 108 градусам не при основании т.к сумма углов треуг равна 180° ,а если этот угол -угол при основании,то оба угла при основании должны быть по 108°,но такое невозможно в сумме 3 угла вершин треуг дают 180° один из углов равен 108° 2 угла при основании равны между собой=> эти два угла в сумме дают 180°-108°=72° и они равны => каждый из углов при основании равен по 36°
найти:V
решение.
площадь правильного треугольника
по условию пирамида правильная, => высота пирамиды проектируется в центр треугольника - точка пересечения медиан, биссектрис, высот, которые в точке пересечение делятся в отношении 2:3 считая от вершины
высота правильного треугольника вычисляется по формуле:
ΔAMO: AM=8, <MAO=60°, => <AMO=30°
AO=AM/2 катет против угла 30° в 2 раза меньше гипотенузы.
АО=4
OM²=AM²-AO², OM²=8²-4², OM=4√3