2. Дано: <EAC=<DCA DF=EF Доказать, что ΔABC-равнобедренный. Док-во: 1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда AF=FC. Так как DC=DF+FC и AE=AF+EF, то DC=AE. 2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона). Из равенства Δ следует, что <DAC=<ECA. <DAC=<BAC <ECA=<BCA. Отсюда <BAC=<BCA. Значит ΔABC-равнобедренный. Что и требовалось доказать.
2. Дано: <EAC=<DCA DF=EF Доказать, что ΔABC-равнобедренный. Док-во: 1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда AF=FC. Так как DC=DF+FC и AE=AF+EF, то DC=AE. 2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона). Из равенства Δ следует, что <DAC=<ECA. <DAC=<BAC <ECA=<BCA. Отсюда <BAC=<BCA. Значит ΔABC-равнобедренный. Что и требовалось доказать.
По свойству биссектрисы b:c=6:10=3:5
Тогда по теореме Пифагора а=sqrt((5n)^2-(3n)^2)=4n=16(см)
b=3n=3*4=12 см
S=0.5*a*b=0.5*16*12=96 см кв.