40 . . на стороне аb параллелограмма abсd отмечена точка е . докажите ,что сумма площадей треугольников аеd и bec равна половине площади параллелограмма abсd
Нарисуй так, чтобы ab была наверху, так проще. 1) площадь abcd = h*ab, где h - высота из точки E на cd 2) площадь ced постоянна, ты меняешь местоположение E, но не происходит ничего, основание тоже, высота та же, а площадь треугольника h * cd / 2, а значит, от местонахождения E не зависит ничего. 3) так как S ced = 1/2 * Sabcd, просто сравни h*ab и h*ab/2, площадь треугольника в 2 раза меньше. 4) а значит сумма оставшихся треугольников будет равна Sabcd - Sced = 1/2 * h * ab, вот и всё за внимание :D
Проводим высоты из больших углов (при меньшем основании), получается два прямоугольных треугольника с катетом высотой, гипотенузой боковой стороной и ещё один катет - часть большего основания, и прямоугольник. Треугольники будут равны, т.к. трапеция равнобокая, а т.к. один из углов 45, то они будут ещё и равнобедренны, т.к. они равнобед., то кусок большего основания равен высоте = 10, из этого кусок большего основания, который равен меньшему (из прямоугольника) = 70 -10*2 (на два, т.к. треугольника 2) => меньшее основание = 50 => Sтрапеции=(a+b)/2 *h=(70+50)/2 *10=(70+50)*5=120*5=600
1) площадь abcd = h*ab, где h - высота из точки E на cd
2) площадь ced постоянна, ты меняешь местоположение E, но не происходит ничего, основание тоже, высота та же, а площадь треугольника h * cd / 2, а значит, от местонахождения E не зависит ничего.
3) так как S ced = 1/2 * Sabcd, просто сравни h*ab и h*ab/2, площадь треугольника в 2 раза меньше.
4) а значит сумма оставшихся треугольников будет равна Sabcd - Sced = 1/2 * h * ab, вот и всё за внимание :D