Треугольники равносторонние ⇒ AD=CE=BF.
ΔADF - прямоугольный, угол F=30°, AD-x, AF-2x ⇒AB=3x=18, x=18/3=6, 2x=12. DF=√(12²-6²)=6√3, P=DF*3=18√3.
Объяснение:
1) Правильная пирамида - это такая пирамида, в основании которой лежит правильный многоугольник, а высота проецируется в центр основания.
2) Правильным называется многоугольник, у которого все стороны и углы одинаковые. Согласно этому определению, ромб не является правильным многоугольником (не соответствует критерию равенства всех углов).
3) Следовательно, в отношении такой пирамиды не применима формула расчета площади боковой поверхности через площадь основания и cos α - угла между апофемой боковой грани и её проекцией на плоскость основания.
ответПусть дан отрезок АС.
Чтобы с линейки и циркуля построить его середину М, нужно:
1) Из А и С как из центров циркулем провести равные окружности радиусом несколько больше половины этого отрезка,( на глаз это определить несложно), чтобы они могли пересечься.
2) Окружности пересекутся по обе стороны от АС. в точках В и Д ( можно обозначить иначе).
Соединить точки пересечения окружностей.
3) ВД пересечет АС в т.М, которая и является серединой данного отрезка АС.
------
Доказательство.
АВ=ВС=СД=ДА=ВК – радиусы равных окружностей =>
АВСД - ромб, АС и ВД его диагонали. Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам. =>АМ=МС,
Середина М отрезка АС построена.
Рассмотрим ΔEBF
пусть FB=x
тогда EB=18-x
<FEB=30
FB=EB*sin30
x=(18-x)/2
2x=18-x
3x=18
x=6
FB=6;EB=12
по т пифагора
EF^2=EB^2-FB^2=12^2-6^2=144-36=108; EF=6√3
P(DEF)=3EF=18√3