Дан ромб ABCD; AB=5см; AC+BD=18см.
Найти S(ABCD).
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам. Пусть AC∩BD=O.
AO+BO = AC:2+BD:2 = (AC+BD):2 = 18см:2 = 14см
ΔABO - прямоугольный (∠O=90°). Пусть AO=x см, тогда BO=14-х см
По теореме Пифагора:
AO²+BO² = AB² ⇒ x²+(14-x)²=100²
2x²-28x+96 = 0; x²-14x+48 = 0; x(x-8)-6(x-8) = 0; (x-8)(x-6) = 0
x=6 или x=8
Если AO=6см, то ВО=8см, АС=12см, BD=16см
Если АО=8см, то ВО=6см, АС=16см, BD=12см
Получается ABCD это ромб с диагоналями, равными 16см и 12см.
Площадь ромба равна полупроизведению его диагоналей.
S(ABCD) = = 16·12:2 см² = 8·12 см² = 96см²
ответ: 96см².
Объяснение:
1) 18см
2) 12см
3) 6см
4) 27см.
Найдите стороны четырехугольника.
Объяснение:
Пусть длина 1 стороны - х см.
Запишем % в десятичном виде:
50%=50/100=0,5
150%=150/100=1,5
1 сторона - х см
2 сторона - 2/3х
3 сторона - (2/3х)×0,5
4 сторона - 1,5х
Р (периметр) - 63 см
1)Составим уравнение:
х+2/3х+(2/3х)×0,5+1,5х=63
х+2/3х+(2/3)×(1/2)х+3/2х=63
х+2/3х+1/3х+3/2х=63 | ×6
6х+4х+2х+9х=63×6
21х=378
х=378:21
х=18 см первая сторона;
2) 18×2/3=12 (см) вторая сторона;
3) 12×0,5=6 (см) третья сторона;
4) 18×1,5=27 (см) четвертая чторона.
1 сторона 18 см
2 сторона 12 см
3 сторона 6 см
4 сторона 27 см.
т.к углы BEF и DEF смежные, то их сумма равна 180°
Значит угол DEF = 180-140=40°
Углы ABP и BPC внутр. накрест лежащие а значит они равны 180-40-40=100°(треугольник ABE)
BPC и BPD смежные , значит угол BPD=180-100=80°