а) По условию MD перпендикулярна плоскости квадрата,
АD -проекция АМ на плоскость квадрата.
СD - проекция СМ на плоскость квадрата.
По т. о 3-х перпендикулярах МА⊥АВ, и МС⊥СВ.
Углы МАВ и МСВ прямые,⇒ ∆ МАВ и Δ МСВ прямоугольные.
б) В прямоугольном ∆ МDB катет DB равен MD:tg60°=6:√3=2√3
BD- гипотенуза прямоугольного равнобедренного ∆ ABD, его острые углы=45°.
АВ=ВD•sin45°=2√3•√2/2=√6
в) МD перпендикулярна плоскости квадрата по условию.
В ∆ АВD катет АD является проекцией наклонной АМ на плоскость квадрата.
Гипотенуза DB является проекцией МВ на плоскость квадрата.
АВ - общий катет ∆ АМВ и ΔΔ ADB. ⇒ ∆ ABD является проекцией ∆ MAB на плоскость квадрата.
в) В ∆ МАВ по т. о 3-х перпендикулярах наклонная МА⊥АВ,⇒
∆ МАВ прямоугольный.
Ѕ=AM•AB:2
Из ∆ АМD по т.Пифагора АМ=√(MD²²+AD²²)=√(36+6)=√42
S=√42•√6=√(7•6•6)=6√7 см²
Пусть данная пирамида МАВС, МО - высота, точка О - центр треугольника; угол ОМА=45°
МО⊥плоскости основания, ∆ МОА - прямоугольный.
Сумма острых углов прямоугольного треугольника 90°, ⇒∠МАО=45°,
∆ АОМ - равнобедренный. АО=МО=12 см.
О - точка пересечения медиан ∆ АВС, и по свойству медианы АО:НО=2:1. Тогда высота основания АН=12:2•3=18 см
АС=АН:sin 60°=18:√3/2=36:√3•2=12√3
V=S•h:3
Формула площади правильного треугольника
36•3•√3 см²
V=36•3•√3•12:3=432√3 см³
* * *
Объём цилиндра равен произведению площади основания на высоту. Пусть основание вписанной призмы – ∆ АВС, АВ - гипотенуза, АС =m, угол АВС=f.
.Центр окружности, описанной вокруг прямоугольного треугольника, лежит в середине гипотенузы, а радиус равен её половине.
⇒ радиус основания цилиндра равен половине АВ.
АВ=m:sin f
R=0,5m:sin f
V=πr²•h
BC=11-4=7