1. Апофема равна (a/2)/cos(60) = a = 6. Значит у боковой грани основание и высота равны a = 6.
Поэтому ребро равно корень(a^2 + (a/2)^2) = a*корень(5)/2 = 3*корень(5);
2. Проведем в основании высоту к стороне 12. получится 2 равных прямоугольных треугольника с гипотенузой 10, катетом 6 и вторым катетом 8 (опять 3,4,5).
Отсюда площадь основания 12*8/2 = 48; периметр 22, радиус вписанной окружности
r= 2*S/P = 96/22 = 48/11.
апофема равна h = r/cos(45) = (48/11)*корень(2);
площадь боковой поверхности P*h/2 = 48*корень(2)
Площадь полной поверхности 48*(1+корень(2))
Обозначим равные катеты прямоугольного треугольника - а.
АК и ВМ - медианы. Медианы, проведенные к равным сторонам, равны. АК = ВМ.
Из прямоугольного треугольника САК по теореме Пифагора найдем медиану АК:
АК = √(АС² + СК²) = √(а² + (a/2)²) = √(a² + a²/4) = √(5a²/4) = a√5/2
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины, тогда
OK = ОМ = 1/3 AK = a√5/6
AO = ВО = 2·OK = a√5/3
Из треугольника ОКВ по теореме косинусов:
KB² = KO² + OB² - 2·KO·OB·cosα
a²/4 = (a√5/6)² + (a√5/3)² - 2 · a√5/6 · a√5/3 · cosα
a²/4 = 5a²/36 + 5a²/9 - 2 · 5a²/18 · cosα
1/4 = 5/36 + 5/9 - 5/9 · cosα
cosα = (25/36 - 1/4) : (5/9) = 16/36 · 9/5 = 4/9 · 9/5 = 4/5 = 0,8
По таблице Брадиса находим, что
α ≈ 37°
б) точка К лежит на ВД которая в равнобедренном треугольнике является высотой, медианой , следовательно МN перпендикулярно ВК