Основанием прямого параллелепипеда ABCDA1B1C1D1 является ромб АВСD, сторона которого равна а и угол равен 60°. Плоскость АD1C1 составляет с плоскостью основания угол 60°.
(Здесь нужно заметить, что не диагональ боковой грани ВС1 составляет угол 60°, а перпендикуляр С1Н к АВ)
Найдите:
а) высоту ромба;
Данный ромб состоит из двух равносторонних треугольников с общей стороной СА.
Высота СН равностороннего треугольника АВС равна высоте ромба:
h=а*sin(60°)=а(√3):2
б) высоту параллелепипеда;
Параллелепипед прямой. Высотой является С1С, - она перпендикулярна плоскости ромба по условию - и с СН является катетом прямоугольного треугольника СС1Н с прямым углом при С.
С1С:СН=tg(60°)
C1C=tg(60°)*CH=√3*а(√3):2=3a/2=1,5a
в) площадь боковой поверхности параллелепипеда:
Sбок=Р(ABCD)*H=4a*1,5a=6a²
г)площадь поверхности параллелепипеда:
Она состоит из суммы площадей 2-х оснований и боковой поверхности:
2S◊(ABCD)=2*a²*sin(60°)=2*0,5*a²√3=a²√3
S полн=6a²+a²√3=а²(6+√3)
Через точку В проведём вторую плоскость, параллельную первой. Перпендикуляр АР на эту плоскость равен: АР=АК+ВМ=14+3=17 см.
В тр-ке АРВ РВ=√(АВ²-АР²)=√(19²-17²)=√72=6√2 см.
РВ - это проекция прямой КМ на вторую плоскость. Так как плоскости параллельны , то КМ=РВ=6√2 см - это ответ.