Две прямые, касающиеся данной окружности в точках а и в, пересекаются в точке с. докажите, что центр окружности, вписанной в треугольник авс, лежит на данной окружности.
Точка О2 - центр вписанной окружности в тр-ник АВС. Точка О1 - центр заданной окружности. Около тр-ка АВС опишем окружность. АО2, ВО2 и СО2 - биссектрисы соответствующих углов. Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. ∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2. ∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине. Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный. КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности. Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности. Доказано.
При решении данной задачи главным образом надо обратить внимание на то что данный треугольник является равнобедреннымПусть b - сторона треугольника , из этого следует что вторая сторона тоже будет равна b, потому что треугольник равнобедренный. Раз стороны равные = b, то 3-я сторона равна b+8.(так как разность двух сторон равен 8) Периметр - это сумма всех сторон. Составляем и решаем уравнение данное уравнение где 2 стороны равны а 3 выражаем из 1 и 2 стороны. b+b+b+8=38 3b=30 b=10 1 из одинаковых сторон треугольника равна 10 см, значит 3-я сторона равна 10+8=18 см. ответ: стороны треугольника: 10 см, 10 см и 18 см.
Прямая АВ - секущая при ВС и АД. При этом равные по условию ∠ВАД=∠АВС - внутренние накрестлежащие. Признак параллельных прямых Если внутренние накрест лежащие углы равны, то прямые параллельны. ⇒ АД параллельна ВС. Соединим А и С, Д и В. В четырехугольнике АВСД стороны АД и ВС параллельны и по условию равны. Если противоположные стороны четырехугольника равны и параллельны, этот четырехугольник - параллелограмм. а )треугольник САД может быть равен ВДА только если четырехугольник АВСД - квадрат. б)∠ДВА =∠САВ как накрестлежащие при параллельных ВД и АС и секущей АВ. в) ∠ВАД=∠ВАС только в том случае, если АВСД - ромб. г) если О - точка пересечения СД и АВ, угол АОВ - развернутый и не может быть равен углу ВСА.
Около тр-ка АВС опишем окружность.
АО2, ВО2 и СО2 - биссектрисы соответствующих углов.
Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К.
∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2.
∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине.
Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный.
КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности.
Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают.
О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности.
Доказано.