Диагональ призмы образует угол 45° с диагональю основания, т.к. диагональ основания - проекция диагонали призмы на плоскость основания и, значит, треугольник, в котором высота призмы и диагональ основания - катеты, прямоугольный равнобедренный, в нем диагональ основания равна тоже 20 см. ( т.к. углы при основании этого треугольника по 45°), диагональ квадрата равна а√2, где а - сторона квадрата, поэтому 20=а√2, откуда а=20/√2=10√2/см/. Площадь поверхности состоит из боковой поверхности и двух площадей основания. т.е. 4а*Н+2а²=4*10√2*20+(10√2)²=800√2+400=
(400*(2√2+1))/см²/
Имеем ромб ABCD, точка пересечения диагоналей - О.
У ромба все стороны равны между собой => 52/4=13
Половина диагонали и сторона (любая на выбор, я взял АВ) образуют прямоугольный треугольник.
За теоремой Пифагора АО² + ОВ² = АВ²
Подставляем имеющиеся значения:
5² + ОВ² = 13²
25 + ОВ² = 169
ОВ² = 169 - 25
ОВ² = 144
ОВ = √144
ОВ = 12
Отлично. Найденный нами катет является еще и половиной второй диагонали, которую мы искали. То есть, целая диагональ равна DB= 12•2=24
А теперь...
S = ½d1d2 = ½AC•DB = ½ • 10 • 24 = 120 см.