1. Расстояние от точки К до прямой МР будет являться перпендикуляр КО, опущенный из вершины К на сторону МР. Тогда в прямоугольном треугольнике РОК сторона КР=2КО (по условию). В прямоугольном треугольнике РОК катет КО равный половине гипотенузы КР лежит против угла КРМ равного 30 градусов.
2. Расстоянием от прямой b до стороны КР будет являться перпендикуляр МН, опущенный из вершины М к стороне КР. Тогда в прямоугольном треугольнике РМН против угла НРМ (это тот же угол КРМ) равного 30 градусов лежит катет МН равный половине гипотенузы МР. МН=16/2=8
ответ: 34 см
Объяснение:
1. Расстояния от концов диаметра до касательной -- это перпендикуляры к касательной из этих концов.
AB = 15 см, CD = 19 см
2. O - центр окружности, E - точка касания. Проведём OE. По свойству касательной к окружности OE ⊥ AD
3. Так как OE ⊥ AD, AB ⊥ AD, CD ⊥ AD, то AB ║ CD ║ OE
4. AB║CD ⇒ ABCD - трапеция
5. BO = OC, AB║CD║OE ⇒ AE = ED (теорема Фалеса)
6. Из пункта 5 следует, что OE - средняя линия трапеции ABCD.
OE = (AB + CD)/2 = (15+19)/2 = 34/2 = 17 см
7. OE - радиус. Тогда диаметр BC = 2OE = 2*17 = 34 см
ответ: 4√5 и 2√61
Объяснение: Назовём параллелограмм АВСД. Опустим высоты ВН и СК на АД и ее продолжение.
∆ АВН - прямоугольный, ⇒ угол АВН=30°, АН=АВ•cos60°=8/2=4 см. ДК=АН=4 см.
Высота ВН=CK=АВ•sin60°=8•√3/2=4√3 см.
НД=АД-АН=6 см
АК=АД+ДК=14 см
Из прямоугольного ∆ НВД по т.Пифагора диагональ ВД=√(BH²+НД≡)=√(48+36)=√80=4√5 см
Из прямоугольного ∆ САК диагональ по т.Пифагора диагональ АС=√(196+48)=√244=2√61 см.
Как вариант решения можно использовать т.косинусов.