М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
masha1373
masha1373
08.01.2023 08:35 •  Геометрия

Найдите площадь равнобедренной трапеции, если основание трапеции 4 см и 30 см, а p=64 см

👇
Ответ:
julija74
julija74
08.01.2023
ответ во вложение...
Найдите площадь равнобедренной трапеции, если основание трапеции 4 см и 30 см, а p=64 см
4,4(61 оценок)
Открыть все ответы
Ответ:
орхидея26
орхидея26
08.01.2023

Объяснение:

Смежные и вертикальные углы. Перпендикулярные прямые

Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами.  углы АОВ и ВОС смежные.

Геометрия ГИА, Сумма смежных углов равна 180°

Сумма смежных углов равна 180°

Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .

Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.

Геометрия ГИА, Вертикальные углы равны

Вертикальные углы равны

Рис.2

Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).

Теорема 2. Вертикальные углы равны.

Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.

Отсюда заключаем, что ∠ АОВ = ∠ COD.

Следствие 1. Угол, смежный с прямым углом, есть прямой угол.

Геометрия ГИА, Прямые АС и BD перпендикулярные

Рис.3

Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.

Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.

Геометрия ГИА, АН — перпендикуляр к прямой

АН — перпендикуляр к прямой

Рис.4

Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.

Геометрия ГИА, Чертежный угольник

Чертежный угольник

Рис.5

Справедлива следующая теорема.

Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).

Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.

Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».

4,8(88 оценок)
Ответ:
GTmoonsoonall
GTmoonsoonall
08.01.2023

a) K, L, M ∈ α; α║(SBC)

KL║BS; KM║BC; ML║CS как линии пересечения двух параллельных плоскостей с одной общей.

SH⊥(ABC); AT⊥BC; H∈AT как центр правильного треугольника лежащий на медиане. AH:HT=2:1 по свойству пересечения медиан.

LU⊥KM ⇒ KU=UM ⇒ U∈AT ⇒ LU⊂(AST) ⇒ LU∩SH

Рассмотрим плоскость AST.

LU║ST как линии пересечения двух параллельных плоскостей с (AST).

AK:KB=AL:LS=5:1 по теореме о пропорциональных отрезках.

AU:UT=AL:LS по теореме о пропорциональных отрезках.

Как уже известно AH:HT=2:1. Пусть AU=5x; UT=x ⇒AT=6x ⇒ AH=4x; HT=2x ⇒ HU=2x-x=x.

ΔSHT~ΔRHU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).

Значит SH:RH=HT:HU=2:1. Пусть SH=2y; RH=y ⇒ SR=2y-y=y ⇒ SR=y=RH

То есть плоскость делит высоту пополам.

б) AT=AB*sin 60°=(15+3)*√3/2=9√3.

ΔAST~ΔALU по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).

Значит AL:AS=LU:ST=6:5.

HT=1/3 *9√3=3√3 т.к. AH:HT=2:1

SH=13 ⇒ ST=√(169+27)=14 ⇒ LU=5/6 *14=35/3.

ΔAKM~ΔABC по 3 углам (1 общий остальные равны как соответственных угла при параллельных прямых).

Значит KM:BC=AK:AB=5:6 ⇒ KM=5/6 *18=15.

Как было указано в начале LU⊥KM ⇒ S=1/2* 15*35/3=175/2=87,5

ответ: 87,5.


На ребре ab правильной треугольной пирамиды sabc с основанием abc отмечена точка k, причём ak=15, bk
4,5(58 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ