1.если в прямоугольном треугольнике 1 угол острый,то остальные какие? 2.угол при вершине равнобедренного треугольника,могут ли углы при основании быть тупыми.объясните почему
Для наглядности решения нужно начертить квадрат ABCD, провести диагональ АС, затем разделить все стороны квадрата пополам, соединить их между собой; получаем некий четырехугольник 1234 ( точка 1 - середина стороны AB, точка 2 - середина BC и тд. Решение. 1. Находим, чему равна сторона квадрата: сумма квадратов катетов равна квадрату гипотенузы. Сторона квадрата - катет равна а. 2а² =36; а² = 18; а= 3√ 2; 2. Рассмотрим прямоугольный Δ 1В2; его катеты 1В и В2 равны половине стороны квадрата и равны 3/2 √ 2; тогда гипотенуза, она же сторона вписанного четырехугольника, периметр которого нужно найти равна: √ [ (3/2√ 2)² + (3/2√ 2)²] = √9 = 3. Нетрудно увидеть, что остальные стороны вписанного четырехугольника тоже равны 3; тогда периметр его P= 4x3=12(см). ответ: периметр четырехугольника равен 12см
Для наглядности решения нужно начертить квадрат ABCD, провести диагональ АС, затем разделить все стороны квадрата пополам, соединить их между собой; получаем некий четырехугольник 1234 ( точка 1 - середина стороны AB, точка 2 - середина BC и тд. Решение. 1. Находим, чему равна сторона квадрата: сумма квадратов катетов равна квадрату гипотенузы. Сторона квадрата - катет равна а. 2а² =36; а² = 18; а= 3√ 2; 2. Рассмотрим прямоугольный Δ 1В2; его катеты 1В и В2 равны половине стороны квадрата и равны 3/2 √ 2; тогда гипотенуза, она же сторона вписанного четырехугольника, периметр которого нужно найти равна: √ [ (3/2√ 2)² + (3/2√ 2)²] = √9 = 3. Нетрудно увидеть, что остальные стороны вписанного четырехугольника тоже равны 3; тогда периметр его P= 4x3=12(см). ответ: периметр четырехугольника равен 12см
1. один острый,другой тупой
2.Нет, так как в треугольнике только один угол может быть тупой или прямой.